Gates: A graphical notation for mixture models

نویسندگان

  • Tom Minka
  • John Winn
چکیده

Gates are a new notation for representing mixture models and context-sensitive independence in factor graphs. Factor graphs provide a natural representation for message-passing algorithms, such as expectation propagation. However, message passing in mixture models is not well captured by factor graphs unless the entire mixture is represented by one factor, because the message equations have a containment structure. Gates capture this containment structure graphically, allowing both the independences and the message-passing equations for a model to be readily visualized. Different variational approximations for mixture models can be understood as different ways of drawing the gates in a model. We present general equations for expectation propagation and variational message passing in the presence of gates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gates

Gates are a new notation for representing mixture models and context-sensitive independence in factor graphs. Factor graphs provide a natural representation for message-passing algorithms, such as expectation propagation. However, message passing in mixture models is not well captured by factor graphs unless the entire mixture is represented by one factor, because the message equations have a c...

متن کامل

Causality with Gates

An intervention on a variable removes the influences that usually have a causal effect on that variable. Gates [1] are a general-purpose graphical modelling notation for representing such context-specific independencies in the structure of a graphical model. We extend d-separation to cover gated graphical models and show that it subsumes do calculus [2] when gates are used to represent interven...

متن کامل

­­Image Segmentation using Gaussian Mixture Model

Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...

متن کامل

IMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL

  Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...

متن کامل

Learning Mixtures of Tree Graphical Models

We consider unsupervised estimation of mixtures of discrete graphical models, where the class variable is hidden and each mixture component can have a potentially different Markov graph structure and parameters over the observed variables. We propose a novel method for estimating the mixture components with provable guarantees. Our output is a tree-mixture model which serves as a good approxima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008